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We consider a porous solid, partially filled with a non-wetting fluid, just above the 
injection threshold: the injected regions have the topology of the infinite cluster in 
a percolation problem, and they split into a 'backbone ' part plus 'dead ends'. Under 
a steady Darcy flow, a dye molecule moves by convection on the backbone, and by 
molecular diffusion on the dead ends. The process has some similarity with solute 
transport in chromatographic columns. However, because the 'dead ends ' have a 
broad distribution of sizes, special singularities may occur, which are reminiscent of 
non-Gaussian transport for charge carriers in amorphous semiconductors. 

We ultimately predict the existence of a well-defined diffusion coefficient Dl, for 
motion parallel to  the average flow, in the limit of slow molecular diffusion. We find 
Dll x ( oiJ2/D,, where [ is the percolation correlation length, Vthe macroscopic flow 
velocity and D, the diffusion coefficient of an 'ant '  on the infinite cluster (i.e. the 
macroscopic diffusion constant measured in the absence of flow). 

1. Stagnation effects 
Consider first a saturated porous medium with a reasonably narrow distribution of 

pore sizes (pore diameter d) .  Let us then impose an average drift velocity i7 on the 
fluid, and investigate the spreading of a dye injected at one point. The average drift 
of the dye during a time t is (x) = Ut. The mean-square deviation (for a macroscopic 

( 1 . 1 )  
interval t )  is 

At very low U ,  Dll = D, is the molecular diffusivity of the dye. At higher Peclet 
numbers (Pe = dU/D,) we reach a regime where 

Ax2 = (x')-(x) '  = 2011 t. 

Dll = const x dU (Pe 9 1) .  (1.2) 

Similarly, for motions normal to the average flow, we have another diffusion 
coefficient DI. At high PBclet numbers D, = const x Dll . A detailed discussion of these 
coefficients can be found for instance in Bear (1972). 

These relatively simple features can be upset, however, by stagnation effects. 
( 1 )  A simple example (de Jong 1958) is based on a capillary model for the pores, 

where the capillaries are oriented a t  random. Then the dye particles located in a 
capillary which is nearly normal to theJlow drift very slowly; this leads to logarithmic 
singularities in Dll , which are weak and rather difficult to detect. 

(2) Another, stronger, example of stagnation effects is found in liquid-liquid 
chromatography (see e.g. Aris 1959; Rosset, Caude & Jardy 1982): here we deal with 
a two-scale system: porous grains (inside which the flow velocity is negligible) and 
interstices (with a finite flow velocity U ) .  A solute (or dye) particle is convected in 
the interstices, and then trapped in a grain. The distribution of release times from 

1-2 
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one grain leads to a dispersion Ax, and the associated diffusion coefficient has the 
structure Dll = const x U27, 

where the numerical factor depends on the partition coefficient for the dye, between 
grains and interstices. 7 is an average lifetime for one dye molecule in one grain. The 
contribution (1.3) is essential in all discussions on the optimization of a chromato- 
graphic column. 

(3) A third example can be found in a very different field of physics: namely with 
the drift of electrical carriers in an amorphous semiconductor: the carriers are 
trapped by various defects, and the distribution of release rates W from the traps 
extends to very slow rates. This has been analysed by Scher & Montroll(l975). They 
discuss in particular a distribution p( W ) of release rates of the form 

p(W) = const x WO-' (W-tO) ,  (1.4) 

where 0 < 01 < 1. This form is physically meaningful (it can be achieved commonly 
when W involves an activation energy) and it leads to very extreme effects of 
stagnation. The average drift is not linear in time, but is 

( x ( t ) )  = const x Ut", (1.5) 

where U is the drift velocity without traps. Also the width Ax is comparable to (2 ) .  

One cannot define a diffusion coefficient for this case. These pathological features are 
related to the fact that the slowest traps (with W < l / t )  dominate the behaviour. 

2. Stagnation near a percolation threshold 
2.1. Partial saturation of a porous medium 

Our aim in the present paper is to study another example of stagnation effects. We 
consider a porous medium, again with a relatively narrow distribution of pore sizes 
a.  We fill a certain fraction of the pores by a non-wetting fluid. As discussed in 
particular by Dullien (1979) and by de Gennes & Guyon (1978), we then expect to 
encounter a percolation transition : a macroscopic sample is penetrated only when 
the pressure p is above a threshold pc. For p > p, we generate an infinite cluster of 
fluid in the sample. The volume fraction of fluid AS,@) is a steeply rising function 

( 2 7 3  S,@) = const x 

with /3 = 0.39 in 3 dimensions. We are interested only in the region Ap/p, < 1 where 
this infinite cluster is not very dense. More precisely the mesh size of the cluster (the 
so-called correlation length E;)  must be much larger than a pore size : we then expect 
a universal type of behaviour, independent of the details of the pore statistics. The 
scaling formula for 6 is Ap -" 6 = const x d (E) , (2.2) 

where v = 0.9 in 3 dimensions. The general structure of the impregnated regions is 
represented on figures 1 and 2. 

2.2. Steady $ow conditions 
We now apply a pressure gradient - f to our sample. This will induce a certain flow 
Q (volume/cm2/s) given by Darcy's law 

where k is the permeability of the partly saturated medium, and 7 the liquid viscosity. 
Q = k q - X  (2.3) 
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Backbone 

FIGURE 1.  Qualitative structure of the impregnated regions just above threshold. The only pores 
represented are those which are invaded by the fluid. The pores are drawn as thin lines: near 
threshold, the pore diameter d is negligible in comparison with the correlation length 6.  

II uw--- - _  
Backbone Dead end 

FIGURE 2. Simplified representation of the cluster structure. The size of the largest loops in the 
backbone is the correlation length 5. 6 is also the size of the largest dead ends. 

Near the percolation threshold, we expect a scaling law for the permeability of the 
form 

k = const x Pod zey, 
where t ( - 1.7) is the same exponent that appears in the conductance of an electrical 
network, and P, is the porosity. Reviews discussing the exponent t have been given 
(among others) by Stauffer (1979) and Kirkpatrick (1979). 

Thus the average velocity of a fluid particle is 

We assume that u i s  not too high, so that the flow does not perturb the geography 
of the infinite cluster. 

This resistance to deformation and drag is conditioned by the surface tension y 
of the liquid: we expect all interfaces to be locked in permanent positions provided 
that the local velocities U are smaller than y / T :  this condition is well-achieved in 
most cases. 
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2.3. ’Dead ends’ and ‘backbone ’ 
As shown qualitatively on figure 1 ,  the infinite cluster may be split into two distinct 
portions: a ‘backbone’ plus ‘dead ends’. There is no hydrodynamic flow in the dead 
ends. There is flow in all the backbone (except for accidental stagnations of the de 
Jong type). Thus the backbone is the analogue of the interstices in chromatography, 
while the dead ends are the analogue of the porous grains. 

We know the relative weight of backbone versus dead ends. The probability SB 
of belonging to the backbone has been studied numerically on percolation networks, 
and is of the form 

S,  = const x (2)””. 

p = - S B  = const x pg-1. 

(2.6) 

where the exponent PB is larger than /3 (PB x 0.9 in 3 dimensions) (Stauffer 1979; 
Kirkpatrick 1979). Thus, at small Ap. the relative probability p of being located on 
the backbone is small, 

(2.7) sm 
Having defined these weights, it is immediately important to realize that there exist, 
not one, but two average velocities of importance 

(a)  if we average over all sites on the infinite cluster we obtain the velocity u o f  

( b )  however, we know that only the backbone sites are experiencing a flow. Let 
(2.5); 

us define an average velocity 0, on the backbone 

We see that cB is much larger than u. If we inject our dye at one point in the 
backbone, it will first drift at a velocity - cB; later, by molecular diffusion into the 
dead ends, it will slow down and reach an average velocity u. 

2.4. Diffusion coeficients 

We have already mentioned that our problem is somewhat related to the question 
of solute transport in a liquid-liquid chromatographic column. However, there is one 
important difference. In  the chromatographic example, the grains are relatively 
monodisperse : the distribution of release times has no special singularity. But in the 
partly saturated system, just above threshold, the distribution of dead ends is very 
polydisperse: some are small, some are large. From that standpoint, we might expect 
certain similarities with the problem of electron drift in the presence of deep traps 
in an amorphous solid, discussed by Scher & Montroll (1975). Our analysis of the 
spread Ax is thus conceptually related to that of Scher & Montroll(l975) and Pfister 
& Scher (1978). Rut our distribution of the release frequencies W is different. We have 
a cutoff a t  low W .  

The maximum size of the dead ends is the correlation length 6,  and the minimum 
escape rate (by molecular diffusion inside the dead end) is a certain 1/r5, which has 
been analysed recently by Gefen, Aharony & Alexander (1983) : 

where 6 is the correlation length defined in (2.2), and Da is the diffusion constant for 
an ‘ant in a labyrinth’ (de Gennes 1976; Mitescu, Ottavi & Roussenq 1979; Straley 
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1980; Havlin & Avraham (to be published); Angles d'iluriac, Benoit & Rammal (to 
be published). More precisely, D, is the macroscopic diffusion which can be measured 
on the same, partly saturated, porous sample in the absence of flow (f = 0). The 
coefficient D, is much smaller than the molecular diffusivity D ,  of the dye, because 
(for small Ap)  only a rather weak backbone allows for macroscopic transport. The 
scaling structure of D, is (Gefen et al. 1983) 

Thus the detailed structure of the 'maximum residence time' rt is 

(2.10) 

(2.1 1 )  

Having defined rt, let us return to the problem of u+ 0, i.e. of hydrodynamic 
dispersion. I n  analogy with (2.3) we may guess that the diffusivity, at high PBclet 
numbers, will be of the form : 

where U is a certain average velocity. 
The main problem, to be discussed in the following sections, is to find out what 

average i s  relevant: is i t  u, or is i t  UB,  or is i t  a combination of the two! We show 
that u i s  the correct average to be used. The complete proof is given in 553 and 4. 
But, because this central point was not fully understood by some of our early readers, 
we sketch it now briefly here. I n  terms of velocity correlation functions we have 

D,, = U2r5, (2.12) 

Dll = r" ( [v ( t )  - v] [v( t )  - q)dt  (2.13) 
J O  

and v(t) = p(t) uB(t) ,  where UB(t )  is a local backbone velocity, and p(t) is equal to 
1 on the backbone and to 0 in the dead ends. There are then many terms in (2.13). 
The dominant one is obtained by neglecting the fluctuations of U,  : 

Dl, = J<I/L(t) -PI b(0) -PI) [FB dt. 

F( t )  = ( ( p ( t )  -PI M O )  - P ) )  

(2.14) 

The pp correlation function 
(2.15) 

starts from a value P (  1 -P) at t = 0 and has a time integral 

F(t )  dt = , E 2 ~ c .  s (2.16) 

This ultimately leads to (2.12). But the proof of (2.16) is not obvious, and requires 
the full analysis of 54. 

It is important to  notice that Dll involves certain convective parameters (u), but 
also depends on the molecular diffusivity (through r f ) .  Thus (as is the case for many 
transport problems) D,, is really a complex admixture of hydrodynamic and molecular 
parameters. 

We conclude this section by a remark on the domain of applicability of the present 
calculation. 

(a)  We want to be in a slow-flow regime (immobile menisci) and this requires 

(2.17) 
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so that Dll >> D,. Using (2.12) with U = u, this leads to 
( b )  Hydrodynamic dispersion is important only if the velocities are not too slow, 

> DJE. (2.18) 

Now Uand U ,  are related by (2.8). Thus to satisfy both conditions (2.13, 2.14) we 

(2.19) 
must have D r>., 

9 @ 
or explicitly g 9 (9J-B” 

In 3 dimensions the exponent on the right-hand side is very close to zero, and the 
condition reduces practically to yd/9D1 9 1 or 

Dl 9 d B a ,  a=--. 
Y 

(2.20) 

The length a is comparable to a molecular diameter, and the condition (2.16) is amply 
satisfied. 

3. Diffusion and correlation functions 
Let us assume that a solute particle (a dye) has been injected a t  time t = 0 at one 

point, and look at  its displacement x,(t) after a long time interval ( t  D r f ) .  We restrict 
our attention to an isotropic porous medium : there are then two separate components 
of interest xll(t) parallel to the average flow Uand xl(t) (normal to q. In what follows 
we shall be mainly concerned with xll(t). We can write the displacement x, in terms 
of an instantaneous velocity w,: 

t 

0 
z,(t) = I dt’v,(t’). (3.1) 

For our discussion a t  macroscopic scales ( t  > rE,  x 9 fJ we may factorize v, as follows : 

where p(t) = 1 if the particle is on the backbone, and p(t) = 0 if the particle is in a 
dead end, while WB(t)  is the local (Eulerian) flow velocity on the backbone. Equation 
(3.2) ignores the displacements occurring on the dead ends. This is justified at  large 
times t ,  for the following reason : if a dye molecule enters a dead end at a certain point 
A ,  it  will move inside this dead end by Brownian motion; but, when it leaves the 
dead end, this must occur again at  point A :  thus the displacements inside each dead 
end integrate to zero. (On the other hand, (3.2) would not be adequate to discuss x,(t) 
at times t < r5, where our particle need not have returned to A during the available 
time.) 

Inserting (3.2) into (3.1) and taking averages, we recover (2.8) in the form 

But our real interest here lies in the deviations from the mean, so define d as 
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Inserting (3.1) into (3.4) and performing classical manipulations (Bear 1972) we can 
relate D, to the velocity correlations 

The simple form (3.4) is valid if and only if the integral (3.5) converges a t  large times: 
we shall see later that  this is indeed the case here. 

We shall now assume that the variables p ( t )  and UB(t) are decoupled: 

( "Ba(O) U B a ( t )  p(O) p ( t ) )  ("Ba(O) " B c z ( ~ ) )  ( p ( o ) p ( t ) ) .  (3.7) 

( a )  The correlation function ( U ,  U,)  decays to its asymptotic value (( Ua)2) in a 
time 0,. I n  a saturated porous medium the classical estimate for 0, is (l) 

0, - a/U,. (3.8) 
This means that all velocity correlations are out after moving from one pore to  the 
next. I n  our weakly saturated medium (where any arc on the backbone is not a simple 
random walk) the structure of the function ( U U )  is more complex. But 8, is still 
a rapidly decreasing function of the flow velocities. 

( b )  The correlation function (pp)  decays towards its asymptotic value (pi") in a 
time Op, which is essentially controlled by molecular diffusion, and thus independent 
of the flow velocities. 

I n  the present paper we restrict our attention to the limit 0, 4 OF. This means that 
convective effects are dominant; the ratio OJ0, is somewhat similar to a PBclet 
number, and we investigate only the limit of high PBclet numbers. We shall also be 
concerned mainly by motions parallel to the average pow (xll). Then the correlation 
function (3.7) may be simplified into 

( v ~ ~ ( o ) v [ ~ ( t ) ) ~  @ (pL(o)pL(t)) ( O U  6 OBI? 

and the coefficient of hydrodynamic dispersion (3.5) becomes 

Dl, = c& Jm dt (p (O)p( t )  -pi"). 
0 

(3.9) 

(3.10) 

Equation (3.10) is our starting point. The main task is to construct a form of the (,up) 
correlation allowing for capture into a polydisperse ensemble of dead ends. 

4. Exchanges between backbone and dead ends 
4.1. Memory function for one dead end 

Let us assume that the solute molecule is inside one particular dead end at time t = 0, 
and ask for the probability T(t) that it be still in the same dead end a t  time t. We 
call T ( t )  the memory function. It has the following limiting values: 

T ( t  = 0 )  = 1, T(t = 00) = 0. (4.1) 
Three representations will be useful for f ( t ) .  

(a )  One of them is purely formal, but makes contact with the discussions 
concerning traps in amorphous semiconductors by Noolandi, Scher, and others. It 
amounts to writing 

r(t) = Efie-"it+ (4.2) 
i 
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where the sum Xi is over all types of traps, f i  is the corresponding weight, and W ,  
the associated release rate. In  the second form we have introduced a probability 
distribution for the release rates p (  W ) .  

( b )  The second representation for r(t) is based on our present knowledge of 
percolation clusters (Stauffer 1979; Kirkpatrick 1979; Gefen et al. (to be published) 
together with certain specific assumptions. 

Consider an 'ant '  moving by Brownian motion on a percolation cluster of n sites 
(the word 'site' refers to a lattice model for percolation (Stauffer 1979; Kirkpatrick 
1979) ; more generally nd3 would be the volume of fluid in the cluster). We know that, 
for large n, the number of sites explored by the ant  in a time t is 

s( t )  x (Wl t)la (s < n), (4.3) 

where Wl = l ) , d -2  is the unit of frequency (the molecular diffusion rate over one pore) 
and d is the so-called spectral dimensionality of the percolation lattice introduced by 
Alexander & Orbach (1982) and discussed later by Rammal & Toulouse (1983) : 

a = 2  P+Y 
€-/3+2v 

(d z 8 for all known percolating systems). Let us call Tn(t) the memory function for 
our cluster of n sites. We may then propose the scaling form 

rn(t) = g($), (4.4) 

with g(0) = 1 and g(o0)  = 0. I n  practice g(z) will have a rather sharp cutoff a t  x - 1 .  
We may t'hen construct the overall memory function as a weighted average : 

where #n is the probability for one site to  belong to  a dead end of n sites. We shall 
assume that this distribution is qualitatively similar to the Stauffer distribution for 
finite clusters (Stauffer 1979; Kirkpatrick 1979). namely 

r$n = const x H - - ( ~ + € )  ( n  < N * ) ,  (4.6) 

with E = P/(P+ y ) ,  where P i s  defined in (2.1) while y = id-2P is another exponent, 
discussed in Stauffer (1979) and Kirkpatrick (1979) (d, is the dimensionality of space). 
Numerically y z 1.8 in 3 dimensions, and E x 0.18. The distribution (4.6) is cut off a t  a 
certain maximum value n = N* and the scaling law for N* is (Stauffer 1979; 
Kirkpatrick 1979) 

It is of importance t'o note the following properties: 

which may be checked on (2.1). (2.11) and (4.3) (keeping in mind the value ofd quoted 
aft,er (4.3)). Equation (4.8) shows that 7[ is the time required to explore the largest 
clusters (or, here, the largest dead ends). 
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We can now construct the scaling form of T(t) using (4.5). This is easy to  visualize 
if we replace the function g(x) by a sharp cutoff a t  x = 1, giving 

N *  r(t) = x n--(1+6) 

n > s ( t )  

1 
= const x - 

s"t) 
(4.10) 

Equation (4.10) holds when s ( t )  < N * ,  or equivalently when t < 7[. In  the opposite 
case ( t  > 7<) we expect T ( t )  to decay rapidly, as in any diffusion problem within a 
bounded domain containing a sink. 

( c )  It will be useful for us to work with Laplace transforms, setting 

p(P)  = r(t) e-Pt dt. 
0 

For the macroscopic properties discussed in the present paper, we shall need only to 
know the limit of p(P)  at low P (low frequencies). Making use of (4.10) (together with 
the existence of a cutoff in r(t) at t N 7 [ ) ,  we arrive at the following properties: 

(4.11) 

= S ,  T((1 -A75 P), (4.12) 

where A is an unknown numerical constant, depending on the detailed structure of 
the cutoff functions. Equation (4.12) will be our basic tool for the study of 
hydrodynamic dispersion. It is important to appreciate the difference between our 
case (described by (4.12) and the Montroll-Scher problem, where p (  W )  - W--lfor and 
p(P) N P1+Or is singular a t  P = 0. Physically, in the Montroll-Scher case, some traps 
are infinitely slow, while, in our problem, the slowest traps have a finite release 
time N 7[. 

4.2. The backbone response function 
4.2.1. Definition 

Let us assume that we have injected our dye molecule at an arbitrary point on 
the backbone, a t  time t = 0. We introduce a 'response function' R(t) defined as the 
probability (at a later time t )  of finding the molecule again on the backbone. The 
limiting behaviours of R(t) are 

R(0) = 1, R ( t + a )  = ,5. (4.13) 

As usual, the response R ( t )  is directly proportional to the corresponding correlation 
function 

(4.14) 

We can check the normalization in (4.14) a t  time t = 0 ;  since p = 0 or 1 we have 
( p 2 )  = ( p )  E ,ii and (4.13) and (4.14) are compatible. 

4.2.2. Relation between response function and memory function 
We shall now construct this relation, using a detailed kinetic model with traps, 

following Montroll, Scher & Noolandi. Let us call cri(t) the probability of being on 
a trap of type ( i )  a t  time t .  The rate equation for T(t)  is 

9 31 = --R(t)+ Z a i ( t )  H$fi+S(t-O+). (4.15) 
VL i 
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The first term describes capture with a rate w ,  which will be specified below. The 
second term describes a release from the traps. The third term accounts for the 
injection of the dye a t  t = 0,. The rate equation for the traps is 

Going to Laplace transforms, we may write (4.16) in the form 

0 
Ci(P)  = -Z(P), 

[W(P)]-1 = P[1 +wT(P) ] .  

w,+P 
and, returning to (4.15), 

(4.16) 

(4.17) 

(4.18) 

Two limits are of especial interest in (4.18). First let us take P+m.  The known 
structureofT((t) ((4.1), (4.10))showsthat f (P)+Oand t h u s E ( P ) + F l .  Inserting this, 
we check that R(t+O) = 1 as expected from (4.13). The second limit is P + O ,  
corresponding to 

or to  
Z(P) + Pl[ l+  wT(O)]-1 

R(t+ 00) = [l + w T ( 0 ) ] 4 .  

(4.19) 

(4.20) 

Comparing this with (4.13), we conclude that 

w T ( 0 )  = - 1 + ( p ) - l  x @ ) - I ,  (4.21) 

or (inserting (4.12) for T(0) and (2.7) for p) 

w = (/%#,?&)-l = (XB?&)-l. (4.22) 

Notice again the difference with the Montroll-Scher problem, where T(P = 0) = co. 
I n  their case, the probability p of finding a free carrier vanishes and this modifies 
the physics very deeply. 

Having now specified the capture rate w ,  we can go back to (4.18) and write the 
full relation between memory function and response function in the form 

(4.23) 

(4.24) 

the latter form being valid for Prg < 1. 

4.3. Longitudinal-diffusion coeflcient 
We can now return to the basic equation for Dl, (3.11) and replace the (pp)  correlation 
by the response function using (4.14). The result is 

Dil = Jr dt U;p[R(t)  -p] 

= jiu2B lim [R(P)-BZP']. 
P + O  

Inserting (4.24) into (4.25), we arrive at the central result 

(4.25) 

DII = Ar$'Cj2B = Art U' (4.26) 

(4.27) 

where we have expressed r5 in terms of the ant diffusivity D, as explained in (2.9). 

= const x ( U ( ) ~ / D , ,  
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5. Discussion 
The formula (4.26) for the diffusivity may appear trivial a t  first sight, because of 

its similarity with classical results for liquid-liquid chromatography (e.g. Rosset et 
al. 1982). However, as pointed out in $2, the proper choice of velocity average (V)  
in (4.25) is rather delicate, and its justification required the (relatively) heavy artillery 
of $4. More precisely, for a given pressure p ,  + Ap and a given driving force f the 
predicted scaling law is Ap K-8-2~ 

D,, = (U0d)2D?(-) Pc , (5.1) 

where U,, is the drift velocity in a totally saturated medium under the same driving 
force f, and where we have used (2.5), (2.10) and (2.11). The exponent t-p-21' is 
of order -0.5. This value cumulates the uncertainties in three percolation exponents 
and may be rather imprecise, but the sign is probably meaningful. 

When we have a very weakly saturated medium, the flow velocities Ubecome small, 
but the dead ends become very large, and create a very broad distribution of 
retardation times. The latter effect dominates, and DIl diverges a t  p = p,. 

The same conclusion holds in two dimensions ( t=  1.2, /3 = 0.14, v = 1.35). On the 
other hand, if we could go to higher dimensionalities d ,  we should find a drastic 
change in behaviour: for d = 6, where the percolation statistics becomes simple we 
have t = 3, /3 = 1 ,  v = 0.5 and t -P-2v  = + 1.  Thus, in this hypothetical case, Dl, 
would vanish at p = pc. 

We do not know of any existing experiments giving Dll for weakly saturated media, 
impregnated with a non-wetting fluid.? We should especially need to have data 
on large samples (to avoid spurious end affects near the threshold) taken a t  small, 
variable Ap, just above threshold. As already mentioned, these experiments could 
be performed not only in 3 dimensions, but also in 2 dimensions, where some 
interesting model systems are available (Lenormand & Bories 1980; Lenormand 1981 ; 
Lenormand, Zarcone & Sarr (to be published). 

Our discussion has been restricted to longitudinal dispersion (Dli). The structure 
of the transverse-diffusion coefficient D, is completely different. Returning to (3.5), 
we see that D, is dominated by the fast velocity fluctuations on the backbone 

Dl = J(UBl(O) UBl(t)) dt (PU">l (5.2) 

where (p2)  = j i  (since p2 = ,u a t  any point, because p = 0 or 1). As pointed out in 
$2, if the flowline was following a simple random walk, we might argue that the 
correlation time for ( U ,  U,) is simply aUgl, giving D ,  = Ua. But we are dealing 
with backbone paths that (i) deviate from ideal random walks and (ii) are branched. 
Thus it may be that the { U U )  correlation has a relatively slow (power-law) decay 
in time (up to certain cutoff related to the correlation length 6 )  : this would complicate 
seriously the structure of D,. 

Another important question for future work is the structure of the dye distribution 
at earlier times ( t  < 7 [ )  which may well be probed experimentally in the 'semilocal' 
range of distances r (a  4 r 4 E )  provided that one is close enough to threshold (6 9 a) .  
Here, as mentioned in $3, the whole formalism must be revised: the displacements 
inside each dead end must be taken into account, and (3.2) does not hold. 

t The case of a fluid that wets completely the solid/air interface is clearly more complex. All 
our discussion assumes well-defined clusters and this, in turn, requires that the contact angle 
between fluid and solid be finite. 
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We have benefited from very stimulating discussions with S. Alexander and 
C. Mitescu on the ‘ant problem’. 
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